400-780-1011 全国统一24小时咨询服务热线

首页 > 院校资讯 > 考研大纲 >

2022考研大纲:山东大学2022年考研681数学(单)考试大纲

网络 805 2021-09-17 14:49:04

考研大纲不仅能给你一个复习的方向,还能帮助你梳理整个知识大纲,方便学习。考研营小编为大家整理了“2022考研大纲:山东大学2022年考研681数学(单)考试大纲”的相关内容,谢谢您的关注。

681数学(单)

Ⅰ.考试科目

一元微积分、线性代数、概率论

Ⅱ.考试目的

考察考生数学基础知识、基本思想方法,数学基本运算能力及运用所掌握的数学知识和方法分析问题和解决问题的能力。

Ⅲ.考试形式和试卷结构

一、试卷满分及考试时间

试卷满分为150分,考试时间为180分钟

二、答题方式

答题方式为闭卷、笔试

三、试卷题型结构

1.选择题:共20题,每题5分。

2.计算题:8选5,每题10分。

3.试卷内容结构

一元微积分 约70分

线性代数 约50分

概率论 约30分

Ⅳ.考查内容

一、一元微积分

函数、极限、连续

考试内容

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立

数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

<Object: word/embeddings/oleObject1.bin><Object: word/embeddings/oleObject2.bin>

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

考试要求

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系

2.了解函数的有界性、单调性、周期性和奇偶性

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念

4.掌握基本初等函数的性质及其图形,了解初等函数的概念

5.了解数列极限和函数极限(包括左极限与右极限)的概念

6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法

7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系

8.理解函数连续性的概念,会判别函数间断点的类型

9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、值定理),并会应用这些性质

一元函数微分学

考试内容

导数和微分的概念 导数的几何意义 函数的可导性与连续性之间的关系  平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的微分法 高阶导数  一阶微分形式的不变性 微分中值定理 必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值

考试要求

1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程

2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数

3.了解高阶导数的概念,会求简单函数的高阶导数

4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分

5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用

6.会用洛必达法则求极限

7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用

8.会用导数判断函数图形的凹凸性(注:在区间<Object: word/embeddings/oleObject3.bin>内,设函数<Object: word/embeddings/oleObject4.bin>具有二阶导数.当<Object: word/embeddings/oleObject5.bin>时,<Object: word/embeddings/oleObject6.bin>的图形是的;当<Object: word/embeddings/oleObject7.bin>时,<Object: word/embeddings/oleObject8.bin>的图形是的),会求函数图形的拐点和渐近线

9.会描述简单函数的图形

一元函数积分学

考试内容

原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用

考试要求

1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法

2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法

3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值

二、线性代数

行列式

考试内容

行列式的概念和基本性质 行列式按行(列)展开定理

考试要求

1.了解行列式的概念,掌握行列式的性质

2.会应用行列式的性质和行列式按行(列)展开定理计算行列式

矩阵

考试内容

矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算

考试要求

1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质

2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的与方阵乘积的行列式的性质

3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵

4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和的方法

5.了解分块矩阵的概念,掌握分块矩阵的运算法则

向量

考试内容

向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的 向量组的与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法

考试要求

1.了解向量的概念,掌握向量的加法和数乘运算法则

2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法

3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及

4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的之间的关系

5.了解内积的概念.了解线性无关向量组正交规范化的施密特(Schmidt)方法

线性方程组

考试内容

线性方程组的克拉默(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线性方程组的通解

考试要求

1.会用克拉默法则解线性方程组

2.掌握非齐次线性方程组有解和无解的判定方法

3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法

4.理解非齐次线性方程组解的结构及通解的概念

5.掌握用初等行变换求解线性方程组的方法

矩阵的特征值和特征向量

考试内容

矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵

考试要求

1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法

2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法

3.掌握实对称矩阵的特征值和特征向量的性质

三、概率论

随机事件和概率

考试内容

随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验

考试要求

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算

2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等

3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法

随机变量及其分布

考试内容

随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布

考试要求

1.理解随机变量的概念,理解分布函数

<Object: word/embeddings/oleObject9.bin><Object: word/embeddings/oleObject10.bin>

的概念及性质,会计算与随机变量相联系的事件的概率

2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布<Object: word/embeddings/oleObject11.bin>、几何分布、超几何分布、泊松(Poisson)分布<Object: word/embeddings/oleObject12.bin>及其应用

3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布

4.理解连续型随机变量及其概率密度的概念,掌握均匀分布<Object: word/embeddings/oleObject13.bin>、正态分布<Object: word/embeddings/oleObject14.bin>、指数分布及其应用,其中参数为<Object: word/embeddings/oleObject15.bin>的指数分布<Object: word/embeddings/oleObject16.bin>的概率密度为

<Object: word/embeddings/oleObject17.bin>

会求随机变量函数的分布

随机变量的数字特征

考试内容

随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 切比雪夫大数定律

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征

2.会求随机变量函数的数学期望

3.了解切比雪夫不等式和切比雪夫大数定律

以上就是小编整理的“2022考研大纲:山东大学2022年考研681数学(单)考试大纲”的全部内容,更多关于山东大学2022年考研大纲的信息,尽在“考研大纲”栏目,希望对大家有所帮助!

附件: 山东大学2022年考研681数学(单)考试大纲.docx

快给朋友分享吧!

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。

非特殊说明,本文版权原作者,转载请注明出处

本文地址:https://www.kaoyanying.com/dagang/90191.html
关于我们
  • 关于我们
  • 产品&服务
    找院校 找专业 去提问 复试信息
    帮助中心
    • 考研营小程序

      考研营小程序

    • 考研营手机站

      考研营手机站

    • 微信公众号

      微信公众号

    • 研课网

      研课网

    商务合作 咨询电话:400-780-1011 在线客服 友情链接:2375219877