各位研友想知道2025国防科技大学考研各专业怎么复习?大纲是什么?请关注各院校2025硕士研究生考研大纲。今天,考研营小编整理了“2025考研大纲:国防科技大学2025年考研自命题科目 F0205 离散数学 考试大纲”的相关内容,祝您考研成功!
2025 年硕士研究生入学考试自命题科目考试大纲
科目代码:F0205 科目名称:离散数学
一. 考试要求
主要考察学生对离散数学中集合、关系、 函数、 图论、命题逻辑、一阶谓词逻辑、推理系统、 布尔代数等计算机数学的基本概念、计算和证明方法的理解与掌握情况, 以及应用上述概念和方法 进行应用问题离散建模、计算求解和逻辑推理的能力。注重概念的深入理解、知识的综合运用, 以 及现实问题分析和解决。
二、考试内容
1. 逻辑和证明基础
命题、逻辑联接词、真值表、位操作和位串、命题符号化及应用、逻辑等价和蕴含、命题可满 足性及应用、谓词、量词、量词表达式等价及否定、嵌套量词、谓词逻辑符号化、推理规则、归结、 逻辑证明、证明方法、证明策略、逻辑语义。要求熟练掌握命题逻辑和谓词逻辑的基本概念,掌握 逻辑等价和蕴含分析方法,掌握逻辑推理方法和证明方法,能够熟练运用命题逻辑和谓词逻辑求解 逻辑问题, 了解可满足性问题。
2. 基本结构:集合、 函数、序列、求和
集合基本概念、集合描述方法、常见集合、集合相等、属于、子集、空集、幂集、集合的基数、 n 元组、笛卡尔乘积、集合运算(交、并、差、补)、集合恒等式、广义交、广义并、集合的计算机 表示、(全) 函数、函数算术、1 对 1 函数、1-1 对应、 内射、满射、双射、 函数运算(逆函数、 函 数的合成)、若干重要函数、部分函数、序列、算术级数、几何级数、递推关系、一些特殊序列、累 加、基数比较关系(=,≥ , ≤ , <, >)、可数集、不可数集、基数关系证明。要求熟练掌握集合的基 本概念、集合的运算;熟练掌握函数、 函数的运算及其证明;熟练掌握级数、累加;掌握基数比较 和函数的关系、可数集。
3. 归纳和递归
数学归纳法原理、数学归纳法运用、强归纳法原理、强归纳法运用、 良序性质、递归定义函数、 归纳定义法、递归定义的集合和结构、结构归纳法、结构归纳法的运用、广义归纳法、递归算法、 递归算法正确性证明、递归和迭代。要求熟练掌握数学归纳法、强归纳法和结构归纳法,能够熟练 运用归纳定义法;掌握递归和递归算法的基本概念,能够较熟练编写递归算法; 了解递归算法正确 性证明。
4. 关系
二元关系基本概念、关系与函数、二元关系的性质( 自反、对称、反对称、传递)及其证明、 关系的运算、n-元关系基本概念、n-元关系的运算、关系与数据库、关系的表示(关系矩阵、关系 图)、关系的闭包、等价关系、等价类、划分、偏序、全序、 良序归纳原理、哈斯图、最大(小)元、 极大(小)元、上( 下)界、上( 下)确界、格、拓扑排序。要求熟悉集合、关系和函数的关联关 系;掌握关系的性质判定和运算;熟悉关系与关系数据库的关系;掌握等价关系、序关系,能够证 明相关性质; 了解格和拓扑排序。
5. 图
图的基本概念、 图模型、 图的基本术语和特殊类型图、二部图和匹配、 图的应用、 图的运算、 图的表示、 图同构、路径和连通性、欧拉路径和哈密顿路径及其应用、最短路径算法、平面图及其 应用、欧拉公式、库拉托瓦斯基定理、 图的着色问题。要求熟悉图的基本概念和术语;掌握最短路 径算法;熟悉路径和连通性;较熟练掌握图的性质证明;较好掌握二部图和平面图。
树的基本概念和术语、树建模、树的性质及其证明、树的应用、二叉树、树的遍历算法、树的 编码、生成树、最小生成树、回溯。要求熟悉树的基本概念;掌握树的算法和性质证明; 能够使用 树进行建模和应用;掌握各种树的遍历算法;掌握回溯法。
7. 布尔代数
布尔函数、布尔表达式、布尔代数恒等式、对偶、布尔代数定义、范式展开、逻辑门、 电路、 电路极小化。要求掌握布尔表达式变换方法;熟悉布尔代数与电路的关联关系; 了解布尔代数。
三、考试形式
考试形式为闭卷、笔试,考试时间为 2 小时,满分 100 分。
题型包括:计算题、证明题、分析题、推理题等。
四、参考书目
1.Discrete Mathematics and Its Applications (7th edition), Kenneth H. Rosen, ISBN:978-0-07-338309-5, McGraw-Hill, 2012.
2.《离散数学》,王兵山、张强、毛晓光主编,国防科技大学出版社,2001.
以上就是小编整理的“2025考研大纲:国防科技大学2025年考研自命题科目 F0205 离散数学 考试大纲”的全部内容,更多关于国防科技大学研究生考试大纲,F0205 离散数学考研大纲的信息,尽在“考研大纲”栏目,下面我们一起来看看吧!