各位研友想知道2023集美大学考研各专业怎么复习?大纲是什么?请关注各院校2023硕士研究生考研大纲。今天,考研营小编整理了“2023考研大纲:集美大学2023研究生考试大纲:高等代数”的相关内容,祝考研成功!
集美大学2023年硕士研究生入学考试初试自命题考试大纲
考试科目代码:[805]
考试科目名称:高等代数
一、考核目标
(一)考查考生对高等代数的基本概念、主要理论、重要方法的理解与掌握程度。
(二)考查考生的数学抽象思维、逻辑推理及运算求解能力,提高分析问题、解决问题能力。
二、试卷结构
(一)考试时间:180分钟,满分:150分。
(二)题型结构
1、填空题:6小题,每小题5分,共30分。
2、解答题(含证明题):7小题,每小题10-20分,共120分。
三、答题方式
闭卷笔试。
四、考试内容
注:以下各章分值为参考分,允许有5分的上下浮动。
(一)多项式,20分
考试内容:
整除理论、因式分解理论、根的理论。
考试要求:
(1)理解带余除法、整除、最大公因式、互素、重因式、根等有关结论。
(2)掌握互素的证明、不可约的判别、综合除法、最大公因式、重因式、标准分解式与有理根的求法。
(3)了解矩阵或线性变换的多项式。
(二)行列式与线性方程组,20分
考试内容:
行列式的计算、线性方程组解的理论。
考试要求:
(1)理解行列式概念,掌握行列式的常用计算方法;熟悉行列式与方程组、可逆矩阵、矩阵秩、二次型、特征值等的关系。
(2)理解线性方程组解的求法、判定与结构,掌握含参数线性方程组的讨论与求解,理解齐次方程组的基础解系或解空间与系数矩阵秩的关系。
(三)矩阵,20分
考试内容:
矩阵的运算、矩阵的秩与矩阵的分解、分块矩阵及其初等变换的应用。
考试要求:
(1)掌握矩阵的各种运算、矩阵的秩、可逆矩阵。
(2)理解初等矩阵与初等变换的关系、分块矩阵及其应用,了解矩阵分解。
(3)掌握重要知识点联系及其逆否命题...含有零特征值,等等。
(四)二次型,20分
考试内容:
标准形与规范形、正定问题。
考试要求:
(1)掌握化二次型为标准形或规范形的方法、正定问题的判定与证明。
(2)了解合同、负定、半正定的概念。
(五)线性空间,20分
考试内容:
向量组的线性相关性、基、维数和坐标、子空间的和与直和。
考试要求:
(1)了解线性空间的概念、性质以及同构思想。
(2)理解向量组线性无关的常规证法,基与维数的求法与证明。
(3)掌握子空间直和的证明。
(六)线性变换,20分
考试内容:
线性变换的概念、线性变换的矩阵、相似、特征值特征向量与对角化、值域、核与不变子空间。
考试要求:
(1)了解线性变换与方阵的同构对应关系。
(2)理解线性变换、值域与核、不变子空间的概念。
(3)会求线性变换在基下的矩阵,熟悉相似的概念与性质。
(4)掌握特征值与特征向量的求法与证明,对角化问题的判别与讨论;区别线性变换与方阵的特征向量、对角化问题。
(七)Jordan标准形,10分
考试内容:
最小多项式、Jordan标准形。
考试要求:
(1)了解不变因子、初等因子的求法以及与矩阵相似的关系。
(2)理解最小多项式的概念与基本性质,掌握最小多项式、Jordan标准形的求法与应用。
(八)欧氏空间,20分
考试内容:
内积与标准正交基、正交变换和对称变换。
考试要求:
(1)了解欧氏空间、正交补的概念,理解标准正交基的性质及其求法。
(2)理解正交变换和对称变换的主要特征及相关证明,
(3)掌握实对称矩阵的正交相似对角化的计算,利用实对称矩阵性质进一步讨论正定问题。
五、主要参考书目
(一)《高等代数》,王萼芳、石生明,高等教育出版社,2013年(修订),第四版。
(二)《高等代数导教导学导考》,徐仲等,西北工业大学出版社,2004版。
以上就是小编整理的“2023考研大纲:集美大学2023研究生考试大纲:高等代数”的全部内容,更多关于集美大学研究生考试大纲,高等代数考试大纲,2023研究生考试大纲的信息,尽在“考研大纲”栏目,希望对广大学子有所帮助!