各位研友想知道2023大连理工大学考研各专业怎么复习?参考书目是什么?请关注各院校2023硕士研究生考研参考书目,从大连理工大学参考书目中找到自己所需要的信息。今天,考研营小编整理了“2023考研大纲:大连理工大学2023年考研单独考试 数学 考试大纲”的相关内容,请持续关注!
大连理工大学2023年单独考试硕士研究生入学考试大纲
数学
单考“数学”试题分为客观题型和主观题型,具体复习大纲如下:
一、函数、极限、连续
理解数列极限与函数极限的定义及其性质、函数的左极限与右极限。
类型<Object: word/embeddings/oleObject1.bin>
理解并掌握无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较。
当<Object: word/embeddings/oleObject2.bin>时 <Object: word/embeddings/oleObject3.bin>
求极限的方法:熟练理解并掌握极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限
利用连续性
两个重要极限<Object: word/embeddings/oleObject4.bin>
无穷小等价代换
当<Object: word/embeddings/oleObject5.bin>时 <Object: word/embeddings/oleObject6.bin> <Object: word/embeddings/oleObject7.bin>
“<Object: word/embeddings/oleObject8.bin>”型 <Object: word/embeddings/oleObject9.bin> 利用重要极限式指数化
<Object: word/embeddings/oleObject10.bin>
有理函数<Object: word/embeddings/oleObject11.bin>极限(<Object: word/embeddings/oleObject12.bin>)
4.理解函数的连续性(含左连续与右连续)、会求函数间断点的类型。
类型<Object: word/embeddings/oleObject13.bin>
理解续函数的性质和初等函数的连续性,能判断分段函数的连续性。
1.定义:如果<Object: word/embeddings/oleObject14.bin>那么就称函数<Object: word/embeddings/oleObject15.bin>在点<Object: word/embeddings/oleObject16.bin>连续。<Object: word/embeddings/oleObject17.bin>
2.主要条件:<Object: word/embeddings/oleObject18.bin>(由此可求两个参数)
熟练理解并掌握闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理、零点定理)。
二、一元函数微分学
1. 理解导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、掌握平面曲线的切线和法线方程的计算方法。
导数定义:<Object: word/embeddings/oleObject19.bin>=<Object: word/embeddings/oleObject20.bin>,
<Object: word/embeddings/oleObject21.bin> 和 <Object: word/embeddings/oleObject22.bin>
<Object: word/embeddings/oleObject23.bin> <Object: word/embeddings/oleObject24.bin>
可导必连续,连续未必可导
2. 掌握基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性。
初等函数求导公式(16个求导公式,5个求导法则)
导 数 公 式 | 微 分 公 式 |
<Object: word/embeddings/oleObject25.bin> | <Object: word/embeddings/oleObject26.bin> |
<Object: word/embeddings/oleObject27.bin> | <Object: word/embeddings/oleObject28.bin> |
<Object: word/embeddings/oleObject29.bin> | <Object: word/embeddings/oleObject30.bin> |
<Object: word/embeddings/oleObject31.bin> | <Object: word/embeddings/oleObject32.bin> |
<Object: word/embeddings/oleObject33.bin> | <Object: word/embeddings/oleObject34.bin> |
<Object: word/embeddings/oleObject35.bin> | <Object: word/embeddings/oleObject36.bin> |
<Object: word/embeddings/oleObject37.bin> | <Object: word/embeddings/oleObject38.bin> |
<Object: word/embeddings/oleObject39.bin> | <Object: word/embeddings/oleObject40.bin> |
<Object: word/embeddings/oleObject41.bin> | <Object: word/embeddings/oleObject42.bin> |
<Object: word/embeddings/oleObject43.bin> | <Object: word/embeddings/oleObject44.bin> |
<Object: word/embeddings/oleObject45.bin> | <Object: word/embeddings/oleObject46.bin> |
<Object: word/embeddings/oleObject47.bin> | <Object: word/embeddings/oleObject48.bin> |
<Object: word/embeddings/oleObject49.bin> | <Object: word/embeddings/oleObject50.bin> |
<Object: word/embeddings/oleObject51.bin> | <Object: word/embeddings/oleObject52.bin> |
<Object: word/embeddings/oleObject53.bin> | <Object: word/embeddings/oleObject54.bin> |
(1)<Object: word/embeddings/oleObject55.bin>
(2)<Object: word/embeddings/oleObject56.bin> , <Object: word/embeddings/oleObject57.bin>
(3)。<Object: word/embeddings/oleObject58.bin> <Object: word/embeddings/oleObject59.bin>
(4) 复合函数导数<Object: word/embeddings/oleObject60.bin>,<Object: word/embeddings/oleObject61.bin>称为中间变量,<Object: word/embeddings/oleObject62.bin> (5)<Object: word/embeddings/oleObject63.bin>;参数方程求二阶导数<Object: word/embeddings/oleObject64.bin> <Object: word/embeddings/oleObject65.bin>,
<Object: word/embeddings/oleObject66.bin> <Object: word/embeddings/oleObject67.bin>
3. 熟练掌握复合函数、反函数、隐函数以及参数方程所确定的函数的微分法。
例如:隐函数求二阶导数:F(x,y)=0 y=y(x),方程两边对x求导,y的函数看成x的复合函数
4. 理解高阶导数的概念并会计算分段函数的二阶导数、某些简单函数的n阶导数。
5. 熟练理解并掌握微分中值定理,包括罗尔定理、拉格朗日中值定理。
6. 熟练理解并掌握利用洛必达(L’Hospital)法则与求未定式极限。
例如:洛必达法则:“<Object: word/embeddings/oleObject68.bin>,<Object: word/embeddings/oleObject69.bin>”型 <Object: word/embeddings/oleObject70.bin>
7. 理解函数的极值并会利用导数判别函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)。
1.方法:利用最值,单调性证不等式
单调性:单调升:<Object: word/embeddings/oleObject71.bin>,当<Object: word/embeddings/oleObject72.bin>时
单调降:<Object: word/embeddings/oleObject73.bin>,当<Object: word/embeddings/oleObject74.bin>时
<Object: word/embeddings/oleObject75.bin>,<Object: word/embeddings/oleObject76.bin>单调升,<Object: word/embeddings/oleObject77.bin>,<Object: word/embeddings/oleObject78.bin>单调降
利用单调性证不等式,证<Object: word/embeddings/oleObject79.bin>,<Object: word/embeddings/oleObject80.bin>,<Object: word/embeddings/oleObject81.bin>
2.求导时最多到二阶
8. 理解函数最大值和最小值并掌握其简单应用。
三、一元函数积分学
理解原函数和不定积分的概念.
1.原函数:在区间上,若<Object: word/embeddings/oleObject82.bin>,称为的一个原函数。
2.不定积分:在区间<Object: word/embeddings/oleObject83.bin>上,<Object: word/embeddings/oleObject84.bin>的原函数的全体称为<Object: word/embeddings/oleObject85.bin>的不定积分,记为<Object: word/embeddings/oleObject86.bin>
理解不定积分的基本性质、基本积分公式.
① <Object: word/embeddings/oleObject87.bin>是常数) ② <Object: word/embeddings/oleObject88.bin>
③ <Object: word/embeddings/oleObject89.bin>, ④ <Object: word/embeddings/oleObject90.bin>
⑤ <Object: word/embeddings/oleObject91.bin> ⑥ <Object: word/embeddings/oleObject92.bin>
⑦ <Object: word/embeddings/oleObject93.bin> ⑧ <Object: word/embeddings/oleObject94.bin>
⑨ <Object: word/embeddings/oleObject95.bin> ⑩ <Object: word/embeddings/oleObject96.bin>
(11)<Object: word/embeddings/oleObject97.bin> (12)<Object: word/embeddings/oleObject98.bin>
(13)<Object: word/embeddings/oleObject99.bin>
理解定积分的概念和基本性质,掌握定积分中值定理、理解变上限定积分确定的函数并会求其导数、掌握牛顿-莱布尼茨(Newton-Leibniz)公式.
例如:<Object: word/embeddings/oleObject100.bin>
<Object: word/embeddings/oleObject101.bin>,<Object: word/embeddings/oleObject102.bin>
掌握不定积分和定积分的换元积分法与分部积分法.
凑分法:<Object: word/embeddings/oleObject103.bin>
掌握下列常用凑分法
(1)<Object: word/embeddings/oleObject104.bin>
(2)<Object: word/embeddings/oleObject105.bin>
(3)<Object: word/embeddings/oleObject106.bin>
分布积分法:<Object: word/embeddings/oleObject107.bin> <Object: word/embeddings/oleObject108.bin>
掌握(1)<Object: word/embeddings/oleObject109.bin>
(2)<Object: word/embeddings/oleObject110.bin>
(3)<Object: word/embeddings/oleObject111.bin>
(4)<Object: word/embeddings/oleObject112.bin>
<Object: word/embeddings/oleObject113.bin>
简化计算的技巧
例如:(1)1)若<Object: word/embeddings/oleObject114.bin>在<Object: word/embeddings/oleObject115.bin>上连续且为偶函数,则 <Object: word/embeddings/oleObject116.bin>
2)若<Object: word/embeddings/oleObject117.bin>在<Object: word/embeddings/oleObject118.bin>上连续且为奇函数,则 <Object: word/embeddings/oleObject119.bin>
2)<Object: word/embeddings/oleObject120.bin> <Object: word/embeddings/oleObject121.bin>
3)换元法(结合凑微分法)
掌握有理函数、三角函数的有理式和简单无理函数的积分.
熟练掌握利用定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积.
四.常微分方程
理解常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等。
熟练掌握变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程的计算方法。
例如:形式<Object: word/embeddings/oleObject122.bin> 通解:<Object: word/embeddings/oleObject123.bin>
理解线性微分方程解的性质及解的结构定理.
掌握二阶常系数齐次线性的计算方法。
例如:二阶常系数线性齐次方程通解。标准型<Object: word/embeddings/oleObject124.bin>,其中常数。
解法:特征方程:<Object: word/embeddings/oleObject125.bin>,特征根<Object: word/embeddings/oleObject126.bin>
通解<Object: word/embeddings/oleObject127.bin>
熟练理解并掌握简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数,以及它们的和与积的计算方法。
例如:二阶常系数线性非齐次方程通解。标准型<Object: word/embeddings/oleObject128.bin>,其中<Object: word/embeddings/oleObject129.bin>常数 <Object: word/embeddings/oleObject130.bin>,<Object: word/embeddings/oleObject131.bin>
解法:通解<Object: word/embeddings/oleObject132.bin>,其中<Object: word/embeddings/oleObject133.bin>为对应齐次方程通解,<Object: word/embeddings/oleObject134.bin>为本身的特解。
<Object: word/embeddings/oleObject135.bin>,其中<Object: word/embeddings/oleObject136.bin>,<Object: word/embeddings/oleObject137.bin>
会用微分方程解决一些简单的应用问题。
五、多元函数微分学
了解二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质。
理解并掌握多元函数偏导数和全微分、全微分存在的必要条件和充分条件。
熟练理解并掌握多元复合函数求二阶偏导数,会求隐函数的导数。
例如:多元复合函数求偏导数
设函数<Object: word/embeddings/oleObject138.bin>和<Object: word/embeddings/oleObject139.bin>在<Object: word/embeddings/oleObject140.bin>点分别具有对<Object: word/embeddings/oleObject141.bin>和<Object: word/embeddings/oleObject142.bin>的偏导数,而对应的函数<Object: word/embeddings/oleObject143.bin>在相应的<Object: word/embeddings/oleObject144.bin>点具有对<Object: word/embeddings/oleObject145.bin>和<Object: word/embeddings/oleObject146.bin>的连续偏导数,则复合函数<Object: word/embeddings/oleObject147.bin>在<Object: word/embeddings/oleObject148.bin>点具有对<Object: word/embeddings/oleObject149.bin>的偏导数,且
<Object: word/embeddings/oleObject150.bin> <Object: word/embeddings/oleObject151.bin>
同链相乘,分链相加
若<Object: word/embeddings/oleObject152.bin>和<Object: word/embeddings/oleObject153.bin>二阶可偏导,<Object: word/embeddings/oleObject154.bin>具有二阶连续偏导数,则
<Object: word/embeddings/oleObject155.bin> <Object: word/embeddings/oleObject156.bin>
理解方向导数和梯度的概念,并掌握其计算方法。
例如:(1) 方向导数:函数<Object: word/embeddings/oleObject157.bin>f (x , y , z)在<Object: word/embeddings/oleObject158.bin>(<Object: word/embeddings/oleObject159.bin>)点沿方向e<Object: word/embeddings/oleObject160.bin><Object: word/embeddings/oleObject161.bin>的方向导数
<Object: word/embeddings/oleObject162.bin>=<Object: word/embeddings/oleObject163.bin>
(2)梯度:函数<Object: word/embeddings/oleObject164.bin>f (x , y , z)在<Object: word/embeddings/oleObject165.bin>(<Object: word/embeddings/oleObject166.bin>)点的梯度<Object: word/embeddings/oleObject167.bin>
会求空间曲线的切线和法平面、曲面的切平面和法线。
例如:1)空间曲线切线与法平面方程
设空间曲线<Object: word/embeddings/oleObject168.bin>在<Object: word/embeddings/oleObject169.bin>参数<Object: word/embeddings/oleObject170.bin>,
切向量<Object: word/embeddings/oleObject171.bin>,切线方程:<Object: word/embeddings/oleObject172.bin>
法平面方程:<Object: word/embeddings/oleObject173.bin>
2)空间曲面的切平面与法线方程
设空间曲面:<Object: word/embeddings/oleObject174.bin>在切点<Object: word/embeddings/oleObject175.bin>,法向量<Object: word/embeddings/oleObject176.bin>
切平面方程:<Object: word/embeddings/oleObject177.bin>,
法线方程:<Object: word/embeddings/oleObject178.bin>
熟练理解并掌握多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用。
例如:条件极值问题可表述为:求函数<Object: word/embeddings/oleObject179.bin>在条件<Object: word/embeddings/oleObject180.bin>下的极值。
方法:构造拉格朗日函数<Object: word/embeddings/oleObject181.bin>,令<Object: word/embeddings/oleObject182.bin>,<Object: word/embeddings/oleObject183.bin>,<Object: word/embeddings/oleObject184.bin>,<Object: word/embeddings/oleObject185.bin>,解出<Object: word/embeddings/oleObject186.bin>,代入<Object: word/embeddings/oleObject187.bin>,其中最大(小)者为最大(小)值。
六、多元函数积分学
理解二重积分和三重积分的概念及性质、熟练掌握二重积分的计算(直角坐标、极坐标)、会计算三重积分 (直角坐标、柱面坐标、球面坐标)。
例如:1)积分区域D为X-型区域 <Object: word/embeddings/oleObject188.bin>,<Object: word/embeddings/oleObject189.bin>
<Object: word/embeddings/oleObject190.bin>=<Object: word/embeddings/oleObject191.bin>,
积分区域D为Y-型区域<Object: word/embeddings/oleObject192.bin>,<Object: word/embeddings/oleObject193.bin>
<Object: word/embeddings/oleObject194.bin>=<Object: word/embeddings/oleObject195.bin>,
2)对于二重积分,如果区域<Object: word/embeddings/oleObject196.bin>关于<Object: word/embeddings/oleObject197.bin>轴对称,函数<Object: word/embeddings/oleObject198.bin>是关于<Object: word/embeddings/oleObject199.bin>的奇函数(既<Object: word/embeddings/oleObject200.bin>), 则<Object: word/embeddings/oleObject201.bin>;
若是偶函数(既<Object: word/embeddings/oleObject202.bin>),则<Object: word/embeddings/oleObject203.bin>
其中<Object: word/embeddings/oleObject204.bin>是<Object: word/embeddings/oleObject205.bin>在<Object: word/embeddings/oleObject206.bin>轴的上半部分
对于二重积分, 如果区域<Object: word/embeddings/oleObject207.bin>关于<Object: word/embeddings/oleObject208.bin>轴对称,函数<Object: word/embeddings/oleObject209.bin>是关于<Object: word/embeddings/oleObject210.bin>的奇函数(既<Object: word/embeddings/oleObject211.bin>), 则<Object: word/embeddings/oleObject212.bin>;
若是偶函数(既<Object: word/embeddings/oleObject213.bin>),则<Object: word/embeddings/oleObject214.bin>
其中<Object: word/embeddings/oleObject215.bin>是<Object: word/embeddings/oleObject216.bin>在<Object: word/embeddings/oleObject217.bin>轴的右半部分
理解两类曲线积分的概念、性质及两类曲线积分的关系,掌握两类曲线积分的计算方法。
熟练掌握格林(Green)公式和平面曲线积分与路径无关的条件、会求二元函数全微分的原函数。
例如:1)第二型曲线积分(平面曲线)
积分形式:<Object: word/embeddings/oleObject218.bin>+<Object: word/embeddings/oleObject219.bin>=<Object: word/embeddings/oleObject220.bin>
曲线积分与路径无关的充要条件之一是:<Object: word/embeddings/oleObject221.bin>在<Object: word/embeddings/oleObject222.bin>内恒成立;
2)格林(Green)公式
<Object: word/embeddings/oleObject223.bin><Object: word/embeddings/oleObject224.bin>
其中L是D的正方向边界曲线。
了解两类曲面积分的概念、性质,掌握两类曲面积分的计算方法,熟练掌握用高斯公式计算曲面积分的方法。
例如:高斯(Gauss)公式
<Object: word/embeddings/oleObject225.bin><Object: word/embeddings/oleObject226.bin>
七、无穷级数
了解常数项级数的收敛与发散的概念、收敛级数的和的概念。
例如:两种级数
(1)<Object: word/embeddings/oleObject227.bin>级数<Object: word/embeddings/oleObject228.bin>当<Object: word/embeddings/oleObject229.bin>时收敛,当<Object: word/embeddings/oleObject230.bin>时发散
(2)等比级数<Object: word/embeddings/oleObject231.bin> 当<Object: word/embeddings/oleObject232.bin>收敛,且其和为<Object: word/embeddings/oleObject233.bin>;当<Object: word/embeddings/oleObject234.bin>时,等比级数发散
掌握级数的基本性质,掌握级数收敛的必要条件,掌握几何级数与p级数及其收敛性,掌握正项级数收敛性的比较判别法,掌握交错级数并会用莱布尼茨(Leibniz)判别法。
例如:1)正项级数的比值判别法:
正项级数<Object: word/embeddings/oleObject235.bin>,<Object: word/embeddings/oleObject236.bin>
2)比值审敛法,(达朗贝尔(D’Alembert)判别法)设<Object: word/embeddings/oleObject237.bin>为正项级数,如果<Object: word/embeddings/oleObject238.bin>则当<Object: word/embeddings/oleObject239.bin>时级数收敛;<Object: word/embeddings/oleObject240.bin>(或<Object: word/embeddings/oleObject241.bin>)时级数发散;<Object: word/embeddings/oleObject242.bin>时级数可能收敛也可能发散.
3.交错级数<Object: word/embeddings/oleObject243.bin><Object: word/embeddings/oleObject244.bin>的莱布尼茨定理判别法:若(1)<Object: word/embeddings/oleObject245.bin> (2)<Object: word/embeddings/oleObject246.bin>则级数收敛
4(比较审敛法的极限形式) 设<Object: word/embeddings/oleObject247.bin>和<Object: word/embeddings/oleObject248.bin>都是正项级数,(其中<Object: word/embeddings/oleObject249.bin>), 如果 <Object: word/embeddings/oleObject250.bin>则
当<Object: word/embeddings/oleObject251.bin>时,两个级数同时敛散;
当l=0时,若<Object: word/embeddings/oleObject252.bin>收敛,则<Object: word/embeddings/oleObject253.bin>也收敛,若<Object: word/embeddings/oleObject254.bin>发散,则<Object: word/embeddings/oleObject255.bin>也发散.
当<Object: word/embeddings/oleObject256.bin>时,若<Object: word/embeddings/oleObject257.bin>发散,则<Object: word/embeddings/oleObject258.bin>也发散;若<Object: word/embeddings/oleObject259.bin>收敛,则<Object: word/embeddings/oleObject260.bin>也收敛.
了解任意项级数的绝对收敛与条件收敛。
了解函数项级数的收敛域与和函数的概念。
会求幂级数的收敛半径、收敛区间(指开区间)、收敛域。
例如:幂级数<Object: word/embeddings/oleObject261.bin>
(1)收敛半径,收敛域:如果<Object: word/embeddings/oleObject262.bin>其中<Object: word/embeddings/oleObject263.bin>是幂级数<Object: word/embeddings/oleObject264.bin>的相邻两项的系数,则这幂级数的收敛半径<Object: word/embeddings/oleObject265.bin>开区间<Object: word/embeddings/oleObject266.bin>叫做幂级数的收敛区间。再由幂级数在<Object: word/embeddings/oleObject267.bin>处的收敛性就可以决定它的收敛域是<Object: word/embeddings/oleObject268.bin>或<Object: word/embeddings/oleObject269.bin>这四个区间之一。
(1)<Object: word/embeddings/oleObject270.bin>,<Object: word/embeddings/oleObject271.bin>
(2)<Object: word/embeddings/oleObject272.bin>,<Object: word/embeddings/oleObject273.bin>
理解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),熟练掌握简单幂级数的和函数的求法。
理解初等函数的幂级数展开式,熟练掌握应用它们将简单函数间接展开成幂级数。
以上就是小编整理的“2023考研大纲:大连理工大学2023年考研单独考试 数学 考试大纲”的全部内容,更多关于大连理工大学2023年考研大纲的信息,尽在“考研大纲”栏目,下面我们一起来看看吧!